Publications

Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening

Cell-autonomous induction of type I interferon must be stringently regulated. Rapid induction is key to control virus infection, whereas proper limitation of signaling is essential to prevent immunopathology and autoimmune disease. Using unbiased kinome-wide RNAi screening followed by thorough validation, we identified 22 factors that regulate RIG-I/IRF3 signaling activity. We describe a negative-feedback mechanism targeting RIG-I activity, which is mediated by death associated protein kinase 1 (DAPK1). RIG-I signaling triggers DAPK1 kinase activation, and active DAPK1 potently inhibits RIG-I stimulated IRF3 activity and interferon-beta production.

Read more »

Reciprocal regulation of farnesoid X receptor a activity and hepatitis B virus replication in differentiated HepaRG cells and primary human hepatocytes

Hepatitis B virus (HBV) and bile salt metabolism seem tightly connected. HBV enters hepatocytes by binding to sodium taurocholate cotransporting polypeptide (NTCP), the genome of which contains 2 active farnesoid X receptor (FXR) a response elements that participate in HBV transcriptional activity. We investigated in differentiated HepaRG cells and in primary human hepatocytes (PHHs) effects of FXR activation on HBV replication andof infection on the FXRpathway. InHepaRG, FXRagonists (6-ethyl chenodeoxycholic acidandGW4064), butno antagonist, and anFXR-unrelated bile salt inhibited viralmRNA,DNA,andproteinproduction (IC50,

Read more »

Virus-host interactomics: new insights and opportunities for antiviral drug discovery

The current therapeutic arsenal against viral infections remains limited, with often poor efficacy and incomplete coverage, and appears inadequate to face the emergence of drug resistance. Our understanding of viral biology and pathophysiology and our ability to develop a more effective antiviral arsenal would greatly benefit from a more comprehensive picture of the events that lead to viral replication and associated symptoms. Towards this goal, the construction of virus-host interactomes is instrumental, mainly relying on the assumption that a viral infection at the cellular level can be viewed as a number of perturbations introduced into the host protein network when viral proteins make new connections and disrupt existing ones.

Read more »

Activity of Hexokinase Is Increased by Its Interaction with Hepatitis C Virus Protein NS5A

The study of cellular central carbon metabolism modulations induced by viruses is an emerging field. Human cytomegalovirus (HCMV), herpes simplex virus (HSV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and hepatitis C virus (HCV) have been shown recently to reprogram cell metabolism to support their replication. During HCV infection the global glucidolipidic metabolism of hepatocytes is highly impacted. It was suggested that HCV might modify glucose uptake and glycolysis to increase fatty acids synthesis, but underlying mechanisms have not been completely elucidated.

Read more »

Comparative analysis of virus-host interactomes…

Comparative interactomics is a strategy for inferring potential interactions among orthologous proteins or “iginterologs”. Herein we focus, in contrast to standard homology-based inference, on the divergence of protein interaction profiles among closely related organisms, showing that the approach can correlate specific traits to phenotypic differences. As a model, this new comparative interactomic approach was applied at a large scale to human papillomaviruses (HPVs) proteins. The oncogenic potential of HPVs is mainly determined by the E6 and E7 early proteins.

Read more »