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Virus–host interactomes are instrumental to understand global
perturbations of cellular functions induced by infection and
discover new therapies. The construction of such interactomes is,
however, technically challenging and time consuming. Here we
describe an original method for the prediction of high-confidence
interactions between viral and human proteins through
a combination of structure and high-quality interactome data.
Validation was performed for the NS1 protein of the influenza
virus, which led to the identification of new host factors that
control viral replication.
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INTRODUCTION
Viruses are obligate parasites that rely on cellular functions to
replicate. Identifying the cellular functions that a virus must use,
counteract or interfere with to assure its replication is therefore a
major issue for both basic knowledge and drug discovery.
Biological processes being largely dependent on protein–protein
interactions, cellular functions involved in viral replication can be
identified by mapping virus–host protein–protein interactions and
by constructing virus–host interactomes. Until 2007, viral protein–
host protein interactions have essentially been identified in
low-throughput experiments. Several databases are integrating
these data spread in the literature [1–2]. The construction of
physical viral ORFeomes and the development of high-throughput
technologies, such as yeast two-hybrid (Y2H) and tandem affinity

purification coupled to mass spectrometry, led to the publication
of the first virus–host interactomes [3–4]. Although incorporation
of data from different methods or variation of the same method [5]
has improved the quality of the data sets, diversification of
methods is still clearly needed to generate high-quality
comprehensive virus–host interactomes. In addition, regarding
the size of host genome and the huge diversity of viruses, millions
of binary interactions remain to be tested. Therefore, accurate and
rapid methods for the identification of cellular interactors
controlling viral replication is a major issue and a crucial step
towards the selection of original therapeutic targets and drug
development. This could benefit from predictive methods
preselecting subsets of putative interactions. Computational
methods are essentially dedicated to predict intraspecies interac-
tions [6] but applications to pathogen–host protein inter-
actions are now emerging [7]. These methods are generally
evaluated by the overlap between predicted and published
interaction data sets. Here, we present and experimentally
validate an original method for the prediction of virus–host
interactions combining protein structure homology and
interaction redundancy.

RESULTS AND DISCUSSION
Principle of the method
Several methods have proposed to use structural information to
predict protein–protein interactions [8–10]. The method described
here relies on the assumption that when two proteins are
structurally homologous, they are more likely to have interactors
in common (Fig 1A). Using the Structural Classification of Proteins
from SCOP database [11] and the high-quality data sets of
protein–protein interactions from the VirHostNet database [2], we
showed that this assumption is a general feature of human
and viral proteins (supplementary information online). Briefly,
for a viral protein having a solved structure, structurally
homologous human and viral proteins are first selected. Inter-
actors of these homologous proteins are then identified. These
proteins are considered as putative interactors and ranked
according to a score that favors proteins independently identified
from multiple structural homologues.
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3Université de Lyon, Lyon, France

+Corresponding author. Tel: þ 33 437262971; Fax: þ 33 437282341;
E-mail: vincent.lotteau@inserm.fr

wPresent address: Laboratoire de Biométrie et Biologie Évolutive, CNRS, Université
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Prediction of influenza A virus NS1 protein interactions
As a proof of concept, we applied this method to identify new
partners of the influenza A NS1 protein whose full-length structure
has been solved by x-ray crystallography [12], (Fig 1B). A total of
22,052 human protein structures and 4,933 viral protein structures
respectively corresponding to 3,163 human proteins and 440 viral
proteins were extracted from the Protein Data Bank (PDB). The
standalone version 3.1 of the Dali programme was used to perform
one-against-all pairwise alignments between NS1 and these large
data sets of viral and human protein structures [13]. NS1 structural
homologues with a Dali z-score between 2 and 20 were retained
to include weakly homologous proteins and exclude fully
homologous NS1 proteins [14]. All homologues that are full-
length or part of NS1 proteins of influenza A viruses were also
excluded. Hence, known NS1–human interactors were not favored.
Influenza NS1 protein was found structurally homologous to 344
human proteins and 42 viral proteins. Using high-quality data sets

of protein–protein interactions from the VirHostNet database [2],
a total of 1,384 human proteins were predicted to interact with
NS1- 1,377 interacting with human proteins that are homologous
to NS1 and 86 interacting with viral proteins that are homologous
to NS1. These 1,384 proteins were then ranked according to
the number and origin of the NS1 homologues weighted by
their degree. The 5% top-ranked candidates, corresponding to
69 proteins, were selected for further validation (Fig 1B,
supplementary Table S1 online). In silico mapping of the predicted
interactions can also be performed when the structure of domains
or fragments are available. For NS1, an RNA-binding domain
and an effector domain have been structurally defined (PDB
identifiers: 2Z0A and 3D6R, supplementary Table S2 online). Fifty
eight of the 69 predicted interactors for the full-length NS1 protein
were predicted to interact with the RNA-binding domain while
none of them were predicted to interact with the effector domain
(supplementary Table S1 online).
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Fig 1 | Description of the method. (A) Principle of the method. (B) Detailed steps of the method applied to influenza A virus NS1 protein. The score

favors independent predictions provided by interaction redundancies. Score (putative interactor)¼ [(nH
2/kH)þ (nV

2/kV)]� a. With nH and nV number

of distinct human interactors and viral interactors, respectively; kH and kV degree of the protein in the human protein–protein interaction data set and

in the virus–human protein–protein interaction data set, respectively; a¼ 3 for a prediction from both human and virus–human data sets, a¼ 2 from

only virus–human data set, 1 else. H, human; V, virus.
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Functional analysis of NS1 interactors
Sixty-four of the 69 predicted interactors are known to be
expressed in the normal lung or trachea in accordance with
the tropism of the virus (supplementary Table S1 online). Analysis
of enriched gene ontology terms and KEGG pathways corres-
ponding to the 69 predicted interactors of NS1 confirms and
provides more molecular supports to the interplay of NS1 with
essential cellular functions. A significant proportion of the
predicted interactors being involved in apoptosis (Benjamini
P-value¼ 6.31� 10�6), this new data set might help clarifying
the complex and controversial role of NS1 and apoptosis in viral
replication [15–18]. In the enriched RIG-I signalling pathway
(Benjamini P-value¼ 5.4� 10�3), NS1 is known [19,20] to
interfere with the signalling of viral RNA recognition by the
pathogen recognition receptors by interacting with RIG-I and
TRIM25 [21,22]. Here, the interaction of NS1 with 4 IKK proteins
further supports its ability to interfere with this signalling at a more
downstream step. Predicted interaction of NS1 with nine proteins
of the mitogen-activated protein kinase pathway (Benjamini
P-value¼ 1.9� 10�3) is also demonstrative of the crucial role of
this pathway whose late activation is required for efficient
replication of the virus [23].

Validation of NS1 interactors
Experimental validation of the predicted interactions was
performed by Y2H and GST pull down for 32 candidates.
Eighty-one percent of the interactions were confirmed by Y2H
and 72% by co-affinity precipitation (supplementary Fig S1
online). Interestingly, 100% of the interactions were validated
by at least one method when the predicted interactor had a

score 4¼ 3. The validation rate was 83% for predicted interactor
having a score o3 (supplementary Table S1 online). Therefore,
using a score 4¼ 3 as a threshold to select the best interactors,
the prediction method allowed the identification of very high-
confidence interactors. Accordingly, from the 69 interactors
initially predicted, a very high-confidence set of 26 NS1
interactors was retained (Figs 1B and 2A). Performance assessment
of the prediction method shows that this score threshold leads
to an optimal success regarding specificity and precision
(supplementary information online). Twenty-five out of these 26
interactors were new, illustrating the potential of this method to
predict novel interactions (supplementary Table S1 online). From
the 26 interactors, 24 were predicted to interact with the RNA-
binding domain but not the effector domain of NS1 (supplementary
Table S1 online). This was confirmed by GST pull down for the
NS1–BID interaction further validating the method (Fig 2B).

As the overlap of predicted interactors for full-length NS1 and
the RBD is not 100%, both domains and full-length proteins
are essential to explore the full potential of this method.

Impact of silencing NS1 interactors on viral replication
The 26 high-confidence NS1 predicted interactors were further
tested for their ability to control influenza virus replication.
Systematic gene silencing was performed with three independent
small interfering RNA per gene and virus production was first
evaluated 24 h post infection by measuring neuraminidase activity
in the culture supernatant. When viral production was inhibited or
enhanced by at least twofold with at least two short interfering
RNAs (siRNAs) in at least two out of three experiments, viral
production was further quantified with a plaque-forming unit
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Fig 2 | Functional characterization of the 26 best-predicted interactors. (A) The physical and genetic interactions have been tested (white) or not (grey).

Essential host factors are in green and restriction host factors are in red. (B) BID–NS1 interaction mapping. Interaction of myc–BID with GST–NS1

and GST–NS1 RBD but not with GST alone or GST–NS1 effector domain. (C,D) Impact of silencing indicated genes on viral replication. Values are the

number of PFUs normalized to control siRNA. The mean values ±- s.d. from three independent experiments are shown. (C) Restriction host factors.

(D) Essential host factors. GST, glutathione S-transferase; PFU, plaque-forming unit; RBD, RNA-binding domain; siRNA, short interfering RNA.
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assay. Using this criteria, 10 new cellular interactors of NS1 were
found to directly modulate the replication of influenza A virus—
three were functioning as restriction host factors and seven as
essential host factors (Figs 2A,C,D). None of the tested siRNAs
affected cell survival (supplementary Fig S2 online). Therefore,
the method generated a data set that is strongly enriched
in modulators of replication—43.5 versus 0.05–1.2% for
siRNA pangenomic screens.

Proteome-wide prediction of virus–host interactions
Having validated the method, predictions were extended to other
proteins of the same virus to construct a predicted influenza–
human interactome. Structural information was available for
13 structures corresponding to nine viral proteins. Following the
process described above for NS1, 108 interactions were
predicted connecting 41 cellular proteins to six viral proteins
(Fig 3, supplementary Tables S3 and S4 online). The low overlap
of our set of interactions with literature reflects the incomplete-
ness of previously reported influenza virus–host protein
interaction data (supplementary information online). In addition,
structural and interactomic data availability restricts the list of
predictable interactors, as illustrated for NS1 in supplementary
information online. Some human proteins are predicted to

interact with several viral proteins. Multi-targeting of specific
host factors by different proteins of the same virus has been
observed previously, highlighting the importance of such
proteins for the virus [24]. Interestingly, viral proteins sharing
common interactors are those displaying a certain degree of
structural homology (supplementary Table S5 online). Finally, an
up-to-date influenza–human interactome combining literature
and predicted data are presented in Fig 4.

METHODS
Retrieval and annotation of viral and human structures. All
sequences from viral and human protein structures stored at the
PDB were retrieved in a Fasta format and blasted to be annotated
with a GenBank identification for viral proteins and Ensembl
protein identification for human proteins as it is the case in the
VirHostNet database. A total of 4,933 PDB sequences (viral
GenBank identification) and 22,052 PDB sequences (human
Ensembl protein identification) have been retrieved and assigned
to 440 distinct viral proteins and 3,163 distinct human proteins.
For the full-length influenza A virus NS1 protein, the chain A of
the 3F5T PDB structure has been used.
High-quality protein–protein interaction data from VirHostNet.
Protein–protein interaction data were retrieved from the VirHostNet
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database [2]. A high-quality data set of human protein–protein
interactions were defined by selecting interactions identified
by two different methods or in two independent papers.
Indeed, the human interactome is an integration of data from
several databases, and might be polluted by low-confidence
interactions [25]. A high-quality data set of virus–human protein–
protein interactions were constructed with exclusively manually
curated interactions. To experimentally validate the predicted
interactions, an additional level of stringency was added by
focusing on interactions described by classical laboratory tech-
nologies. Altogether, the predictions are on the basis of 16,187
human protein–protein interactions involving 6,378 distinct human
proteins and 2,539 virus–host protein–protein interactions involving
434 viral proteins and 1,395 human proteins (supplementary
Tables S6 and S7 online).
Score definition. All putative interactors were individually
scored according to several criteria. First, an interactor is more
confident when predicted by several independent NS1 homo-
logues. Interactors independently predicted by both viral and

human homologues are favored. The prediction from viral
homologues only is also better considered than the prediction
from human homologues only. Finally, as a correlation was
observed between the score and the degree of a putative interactor
(that is, the number of partners in the protein interaction data set),
the score was weighted by the degree. Altogether, the score
formula is as follows: score (putative interactor¼ [(nH

2/KH)þ (nV
2/

kV)]� a, with: (i) nH and nV number of distinct human interactors
and viral interactors, respectively. (ii) kh and kV degree of the
protein in the human protein–protein interaction data set and in
the virus–human protein–protein interaction data set, respectively.
(iii) a¼ 3 for a prediction from both human and virus–human data
sets, a¼ 2 from only virus–human data set, 1 else. (iv) H: human,
V: virus.
Cells and virus. A549 human lung epithelial cell line and Madin-
Darby canine kidney (MDCK) cell line were grown in DMEM
media supplemented with 100 U ml�1 penicillin/streptomycin
and 10% fetal calf serum at 37 1C and 5% CO2. The epidemic
A/H1N1/New Caledonia/2006 strain was propagated in MDCK
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cells in DMEM supplemented with 1 mg ml�1 modified
trypsin TPCK in absence of fetal calf serum. Virus stocks were
titrated by standard plaque assay on MDCK cells using an agar
overlay medium.
GST pull down. Cellular proteins (corresponding to the 32 cDNAs
available in orfeotech ORFeome v3.1 [26], description of the
hORFeome v3.1 in supplementary information online) were
amplified from the MGC cDNA plasmid collection using KOD
polymerase (Toyobo), cloned by recombinational cloning
into pDONR207 (Life technologies) and transferred to pDEST-
myc or pCIneo3xFlag (kind gift of Y. Jacob). H5N1 NS1 was
transferred into pDEST27 (GST fusion in N-term). A total of 4.105

HEK293T cells were then co-transfected (6 ml JetPei, Polyplus)
with 1.5 mg of each pair of plasmid. Two days after transfection,
cells were harvested and lysed (0.5% NP-40, 20 mM Tris–HCl (pH
8.0), 150 mM NaCl, 1 mM EDTA and Roche complete protease
inhibitor cocktail). Soluble protein complexes were purified by
incubating 300 mg of cleared cell lysate with 40 ml glutathione
sepharose 4B beads (GE Healthcare). A total of 50 mg of cleared
cell lysate was separated on SDS–PAGE and transferred to
nitrocellulose membrane. GST-tagged viral proteins and Myc or
3XFlag-tagged cellular proteins were detected using standard
immunoblotting techniques with anti-GST (Covance), anti-Myc or
anti-Flag (Sigma) monoclonal antibodies.
Yeast two-hybrid. Pairwise Y2H interactions were analysed
by yeast mating, using Y187 and AH109 yeast strains (Clontech).
Prey and bait vectors were transformed into Y187 and AH109.
Bait and prey strains were mated in an all-against-all array and
plated on a selective medium lacking histidine and supplemented
with increasing concentrations of 3-amino-triazole to test the
interaction-dependent transactivation of HIS3 reporter gene.
Some of the preys are membrane proteins but reported in the
literature to give positive results in Y2H (for example, BCL2L11,
BAD) or proteins whose signal peptide is likely to be masked
(supplementary information online). Therefore, we did not
exclude them from the Y2H.
siRNA screening. Five picomoles of each siRNA (stealth select
RNAi, Invitrogen) was arrayed in 96 plates in 10 ml of OptiMEM
(GibCo). Ten microliters per well of a mix lipofectamine
RNAiMAX (Invitrogen)-OptiMEM (0.2ml of lipofectamine RNAi-
MAX in 10 ml of OptiMEM) was added. After 20 min room
temperature-incubation, siRNA–lipofectamine mixes were added
to 30� 103 A549 suspension cells. Cells were incubated for 48 h
at 37 1C and 5% CO2 before influenza virus infection at
multiplicity of infection 0.5. Forty-eight hours after infection,
supernatants were titrated.
Virus infection. siRNA-transfected cells were washed twice
with Dulbecco’s phosphate-buffered saline 1� and infected
with H1N1 influenza strain at multiplicity of infection 0.5 in
Dulbecco’s modified Eagle medium supplemented with
0.2 mg ml�1 trypsin TPCK (infection medium). After 60 min at
37 1C, the inoculum was discarded and cells were washed again
and incubated for 48 h in infection medium at 37 1C and 5% CO2.
Titre measure by neuraminidase activity. Influenza virus
neuraminidase is able to cleave the methyl-umbelliferyl-
N-acetylneuraminic acid (4-MUNANA, Sigma) modifying its
emission wavelength in a dose-dependent manner. In 96-black
plate, 25ml infection supernatants were diluted in 25 ml
Dulbecco’s phosphate-buffered saline 1� containing calcium

and magnesium and 50 ml of 20 mM 4-MUNANA. After 1 h
incubation at 37 1C, 100 ml of glycine 0.1 M 25% ethanol
pH 10.7 was added. Measures were done with TECAN
infinite M1000 instrument at 365 nm excitation and 450 nm
emission wavelengths.

Plaque-forming unit assay. To quantify infectious virus particles
in infected cell culture supernatants, 300,000 MDCK cells
were seeded in 6-well plates. Three days later, cells were washed
twice with DMEM supplemented with 100 U ml� 1 penicillin/
streptomycin. Dilutions of infected cell culture supernatants were
dispensed on the cells. After 1 h 30 min incubation at 37 1C and
5% CO2 cells were washed again and covered with overlay
medium containing MEM 1� , 1% agarose (Lonza) and modified
trypsin TPCK 1 mg ml� 1. Plates were incubated upside down at
37 1C and 5% CO2 up to 72 h. Cells were then fixed with formol
10% and coloured with crystal violet 0.3% in methanol 20%
and lysis plaques were counted.

Functional annotation. DAVID functional annotation chart tool
was used to perform enrichment analysis, in which an annotation
term was considered as significant with a Benjamini–Hochberg
corrected P-value smaller than 0.05 [27].

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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